MATHEMATICS - 1998

PART - A

Directions : Read questions 1 to 40 carefully and choose from amongst the alternatives given below each question the correct lettered choice(s). A question may have ONE OR MORE correct alternatives. In order to secure any marks for a given question, ALL correct lettered alternative(s) must be chosen.

1. If ω is an imaginary cube root of	unity, then $(1 + \omega - \omega^2)^7$ equals :
(A) 128 ω	(B) –128 ω
(C) 128 ω ²	(D) $-128 \omega^2$.
	, for $r = 1, 2, 3, \dots$ If for some positive
. integers <i>m</i> , <i>n</i> we have $T_m = \frac{1}{n}$ and	
$(A) \frac{1}{mn}$	(B) $\frac{1}{m} + \frac{1}{n}$
(C) 1	(D) 0
 In a college of 300 students, even newspaper is read by 60 students (A) at least 30 	ry student reads 5 newspapers and every s. The number of newspapers is : (B) at most 20
(C) exactly 25	(D) none of the above
4. The diagonals of a parallelogram $6x - 2y = 7$. Then <i>PQRS</i> must be	PQRS are along the lines $x + 3y = 4$ and $e a$:
(A) rectangle (C) cyclic quadrilateral	(B) square (D) rhombus
5. The number of common tan $x^2 + y^2 - 6x - 8y = 24$ is :	gents to the circles $x^2 + y^2 = 4$ and
(A) 0 (C) 3	(B) 1 (D) 4
6. Let $f(x) = x - [x]$, for every real r Then $\int_{-1}^{1} f(x) dx$ is :	number x , where $[x]$ is the integral part of x
(A) 1	(B) 2
(C) 0	(B) 2 (D) $\frac{1}{2}$
7. If $P = (x, y)$, $F_1 = (3, 0)$, $F_2 = (-1)$	3, 0) and $16x^2 + 25y^2 = 400$, then
$PF_1 + PF_2$ equals (A) 8 (C) 10	(B) 6
	(17) 12

8. If P (1, 2), Q (4, 6), R (5, 7) and S (a, b) are the vertices of a parallelogram PORS, then : (B) a = 3, b = 4(A) a = 2, b = 4(D) a = 3 b = 5(C) a = 2, b = 3**9.** If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$ are linearly dependent vectors and $|c| = \sqrt{3}$, then : (B) $\alpha = 1, \beta = \pm 1$ (A) $\alpha = 1, \beta = -1$ (D) $\alpha = \pm 1, \beta = 1$ (C) $\alpha = -1, \beta = \pm 1$ 10. If from each of the three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, one ball is drawn at random, then the probability that 2 white and 1 black ball will be drawn is : (A) $\frac{13}{32}$ (B) $\frac{1}{4}$ (D) $\frac{3}{16}$ (C) $\frac{1}{32}$ **11.** The value of the sum $\sum_{n=1}^{13} (i^n + i^{n+1})$, where $i = \sqrt{-1}$, equals : (B) i 1 (A) i (D) 0 (C) -i12. The number of values of x where the function $f(x) = \cos x + \cos (\sqrt{2}x)$ attains its maximum is : (A) 0 (B) 1 (D) infinite (C) 2 **13.** If $f(x) = \frac{x^2 - 1}{x^2 - 1}$ for every real number x, then the minimum value of f: (A) does not exist because f is unbounded. (B) is not attained even though f is bounded (C) is equal to 1 (D) is equal to -114. Number of divisors of the form 4n + 2 ($n \ge 0$) of the integer 240 is : (B) 8 (A) 4 (D) 3 (C) 10 $\lim_{x \to 1} \frac{\sqrt{1 - \cos 2(x - 1)}}{x - 1}:$ 15. $x \rightarrow 1$ (A) exists and it equals $\sqrt{2}$ (B) exists and it equals $-\sqrt{2}$ (C) does not exist because $x - 1 \rightarrow 0$ (D) does not exist because left hand limit is not equal to right hand limit

16. If in a triangle PQR, $\sin P$, $\sin Q$, $\sin R$ are in A. P., then : (B) the altitudes are in H. P. (A) the altitudes are in A. P. (D) the medians are in A. P. (C) the medians are in G. P. **17.** If $a_n = \sum_{r=0}^n \frac{1}{rC_r}$, then $\sum_{r=0}^n \frac{r}{rC_r}$ equals : (B) nan (A) $(n-1)a_n$ (C) $\frac{1}{2}$ na_n (D) None of the above **18.** If the vertices P, Q, R of a triangle PQR are rational points, which of the following points of the triangle PQR is/(are) always rational point(s). (B) incentre (A) centroid (D) orthocentre (C) circumcentre (A rational point is a point both of whose co-ordinates are rational numbers) **19.** The number of values of *c* such that the straight line y = 4x + c touches the curve $\frac{x^2}{4} + y^2 = 1$ is : (B) 1 (A) 0 (D) infinite (C) 2 **20.** If x > 1, y > 1, z > 1 are in G. P., then $\frac{1}{1 + \ln x}$, $\frac{1}{1 + \ln y}$, $\frac{1}{1 + \ln y}$ are in : (B) H.P. (A) A.P. (D) None of the above (C) G.P. **21.** The number of values of x in the interval $[0, 5\pi]$ satisfying the equation $3\sin^2 x - 7\sin x + 2 = 0$ is : (A) 0 (B) 5 (D) 10 (C) 6 22. The order of the differential equation whose general solution is given by $y = (C_1 + C_2) \cos(x + C_3) - C_4 e^{x - C_5}$ where C_1, C_2, C_3, C_4, C_5 are arbitrary constants, is : (B) 4 (A) 5 (D) 2 (C) 3 **23.** If $g(f(x)) = |\sin x|$ and $f(g(x)) = (\sin \sqrt{x})^2$, then : (A) $f(x) = \sin^2 x, q(x) - \sqrt{x}$ (B) $f(x) = \sin x, g(x) = |x|$ (C) $f(x) - x^2$, $g(x) = \sin \sqrt{x}$ (D) f and g cannot be determined **24.** Let $A_0 A_1 A_2 A_3 A_4 A_5$ be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments Ac A1, AcA2 and A₀ A₄ is : (A) $\frac{3}{4}$ (B) $3\sqrt{3}$ (D) $\frac{3\sqrt{3}}{2}$ (C) 3

25. For three vectors u, v, w which of the following expressions is not equal to any of the remaining three ? (B) $(v \times w) \cdot u$ (A) $\vec{u} \cdot (\vec{v} \times \vec{w})$ $i(D) (u \times n) \cdot m$ (C) $\overrightarrow{v} \cdot (\overrightarrow{u} \times \overrightarrow{w})$ 26. There are four machines and it is known that exactly two of them are faulty. They are tested, one by one, in a random order till both the faulty machines are identified. Then the probability that only two tests are needed is : (B) $\frac{1}{6}$ (D) $\frac{1}{4}$ (A) $\frac{1}{3}$ (C) $\frac{1}{2}$ **27.** Let $h(x) = \min \{x, x^2\}$, for every real number of x. Then : (A) h is continuous for all x (B) h is differentiable for all x(C) h'(x) = 1, for all x > 1(D) h is not differentiable at two values of x **28.** If f(x) = 3x - 5, then $f^{-1}(x)$: (A) is given by $\frac{1}{3x-5}$ (B) is given by $\frac{x+5}{3}$ (C) does not exist because f is not one-one (D) does not exist because f is not onto. **29.** If \overline{E} and \overline{F} are the complementary events of events E and F respectively and if 0 < P(F) < 1, then. (B) P(E/F) + P(F/F) = 1(A) $P(E/F) + P(\overline{E}/F) = 1$ (D) $P(E/\overline{F}) + P(\overline{E}/\overline{F}) = 1$ (C) $P(\overline{E}/F) + P(E/\overline{F}) = 1$ 6i -3i 1 | **30.** If $\begin{vmatrix} 1 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy$, then : (B) x = 1, y = 3(A) x = 3, v = 1(D) x = 0, y = 0(C) x = 0, v = 331. A fair coin is tossed repeatedly. If tail appears on first four tosses, then the probability of head appearing on fifth toss equals : (B) $\frac{1}{32}$ (A) $\frac{1}{2}$ (C) $\frac{31}{32}$ (D) $\frac{1}{2}$

32. An n - digit number is a positive number with exactly n digits. Nine hundred distinct n -digit numbers are to be formed using only the three digits 2, 5 and 7. The smallest value of n for which this is possible is : (B) 7 (A) 6 (D) 9(C) 8 33. Seven white balls and three black balls are randomly placed in a row. The probability that no two black balls are placed adjacently equals : (B) $\frac{7}{15}$ (A) $\frac{1}{2}$ (C) $\frac{2}{15}$ (D) $\frac{1}{2}$ **34.** Let *n* be an odd integer. If $\sin n\theta = \sum_{r=0}^{n} b_r \sin^r \theta$, for every value of θ , then : (B) $b_0 = 0, b_1 = n$ (A) $b_0 = 1, b_1 = 3$ (D) $b_0 = 0, b_1 = n^2 - 3n + 3$ (C) $b_0 = -1, b_1 = n$ 35. Which of the following number(s) is/are rational? (B) cos 15° (A) sin 15° (D) sin 15° cos 75° (C) sin 15° cos 15° **36.** If the circle $x^2 + y^2 = a^2$ intersects the hyperbola $xy = c^2$ in four points $P(x_1, y_1), Q(x_2, y_2), R(x_3, y_3), S(x_4, y_4), \text{ then }:$ (A) $x_1 + x_2 + x_3 + x_4 = 0$ (B) $y_1 + y_2 + y_3 + y_4 = 0$ (D) $v_1 v_2 v_3 v_4 = c^4$ (C) $x_1 x_2 x_3 x_4 = c^4$ **37.** If *E* and *F* are events with $P(E) \leq P(F)$ and $P(E \cap F) > 0$, then : (A) occurrence of $E \rightarrow$ occurrence of F(B) occurrence of $F \Rightarrow$ occurrence of E(C) non-occurrence of $E \Rightarrow non-occurrence$ of F(D) none of the above implications holds 38. Which of the following expressions are meaningful question (A) $\overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w})$ (B) $(u \cdot v) \cdot w$ (C) $(\vec{u} \cdot \vec{v}) \vec{w}$ (D) $\overrightarrow{u} \times (\overrightarrow{u} \cdot \overrightarrow{u})$ **39.** If $\int_0^x f(t) dt = x + \int_x^1 t f(t) dt$, then the value of f(1) is : (A) $\frac{1}{2}$ (B) 0 (D) $-\frac{1}{2}$ (C) 1

40. Let $h(x) = f(x) - (f(x))^2 + (f(x))^3$ for every real number x. Then:

(A) h is increasing whenever f is increasing

(B) h is increasing whenever f is decreasing

(C) h is decreasing whenever f is decreasing

(D) nothing can be said in general.

ANSWERS

	2. (C)	3. (C)	4. (D)	5. (B)	6 . (A)
1.(D)		9. (D)	10. (A)	11. (B)	12. (A)
7.(C)	8. (C)			17. (C)	18. (A)
13. (D)	14. (A)	15. (D)	16 (B)		24. (C)
19. (C)	20. (B)	21. (C)	22 . (C)	23. (A)	
25. (C)	26. (B)	27. (A), (C		29. (A), (D)	30. (D)
31. (A)	32. (B)	33. (B)	34. (B)	35. (C)	10 (A) (C)
	B), (C), (D)	37. (D)	38. (A), (C)	39. (A)	40. (A), (C)

SOLUTIONS

1.
$$(1 + \omega - \omega^2)^7 = (-\omega^2 - \omega^2)^7$$

= $(-2\omega^2)^7 = (-2)^7 (\omega^2)^7 = -128 \cdot \omega^{14} = -128 \omega^2$

Therefore, (D) is the Ans.

 $T_m = a + (m - 1) d = \frac{1}{n}$ $T_n = a + (n - 1) d = \frac{1}{m}$ let 2. and

$$\Rightarrow \qquad (m-n) d = \frac{1}{n} - \frac{1}{m} = \frac{m-n}{mn} \qquad \Rightarrow \qquad d = \frac{1}{mn}$$

Again
$$T_{mn} = a + (mn - 1) a$$

= $a + (mn - n + n - 1) d$
= $a + (m - 1) d + (mn - n) d$
= $T_n + n (m - 1) \cdot \frac{1}{mn}$
= $\frac{1}{m} + \frac{(m - 1)}{m} = \frac{1}{m} + 1 - \frac{1}{m} = 1$

Therefore, (C) is the Ans.

3. Let number of newspaper which are read be n. Then $60n = 300 \times 5$

n = 25

 \Rightarrow Therefore, (C) is the Ans.

x + 3y = 4 is -1/34. Slope of and slope of 6x - 2y = 7 is 3.

therefore, these two lines are perpendicular which show that both diagonals are perpendicular. Hence *PQRS* must be a rhombus.

5.
$$x^2 \quad y^2 = 4$$
 (given)
centre $= c_1 \equiv (0, 0)$ and $R_1 = 2$.
Again $x^2 + y^2 - 6x - 8y - 24 = 0$ then $c_2 = 3, 4$
and $R_2 = 7$.
Again $c_1 c_2 = 5 = R_2 - R_1$
Therefore, the given circles touch in ternally such that they can have just one
common tangents at the point of contact.
Therefore, (B) is the Ans.
6. $\int_{-1}^{1} f(x) dx = \int_{-1}^{1} (x - [x]) dx = \int_{-1}^{1} x dx - \int_{-1}^{1} [x] dx$
 $= 0 - \int_{-1}^{1} [x] dx$ [: x is an odd function]
But $[x] = \begin{cases} -1 & \text{if } 1 \le x < 0 \\ 0 & \text{if } 0 \le x < 1 \\ 1 & \text{if } x = 1 \end{cases}$
 $\therefore \int_{-1}^{1} [x] dx = \int_{-1}^{0} [x] dx + \int_{0}^{1} [x] dx$
 $= \int_{-1}^{0} (-1) dx + \int_{0}^{1} 0 dx$
 $--[x]_{-1}^{0} + 0 = 1$
Thus $\int_{-1}^{1} f(x) dx = 1$.
Therefore, (A) is the Ans.
7. $16x^2 + 25y^2 = 400$ (given)
 $\Rightarrow \frac{x^2}{25} + \frac{y^2}{16} = 1$
Here $a^2 = 25, b^2 = 16$
But $b^2 - a^2(1 - e^2)$
 $\Rightarrow 16 = 25(1 - e^2) \Rightarrow \frac{16}{25} = 1 - e^2$
 $\Rightarrow e^2 = 1 - \frac{15}{25} = \frac{9}{25}$
 $\Rightarrow e = 3/5$
Now for of the ellipse are $\pm ae, 0 = \pm 3, 0$
we have $3 = a, \frac{3}{5} \Rightarrow a = 5$
Now $PF_1 + PF_2$ – focal distance $= 2a = 2 \times 5 - 10$
Therefore, (C) is the Ans.
8. PQRS is a parallelogram if and only if the mid-point of *PR* is same as that if the

mid-point of QS. That is, if and only if PR is

 $\frac{2+7}{2} = \frac{6+b}{2}$ $\frac{1+5}{2} = \frac{4+a}{2}$ and a = 2 and b = 3. Therefore, (C) is the Ans. **9.** It is given that a, b, c are linearly dependent $\Rightarrow [a, b, c] = 0$ It is given that a, b, c are intearly dependent of a, b, c are intearly dependent of a, b, c $\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 4 & 3 & 4 \\ 1 & \alpha & \beta \end{vmatrix}$ $\Rightarrow \begin{vmatrix} 1 & 0 & 0 \\ 4 & -1 & 0 \\ 1 & \alpha - 1 & \beta - 1 \end{vmatrix} = 0$ Apply $C_2 \to C_2 - C_1, C_3 \to C_3 - C_1$ Now expanding along R_1 , $-(\beta - 1) = 0 \implies \beta = 1$ -> Also $|\vec{c}| = \sqrt{3}$ (given) where $c = \hat{i} + \alpha \hat{j} + \beta \hat{k}$ (given) $1 + \alpha^2 + \beta^2 = 3$ \Rightarrow $1 + \alpha^2 + 1 = 3 \implies \alpha^2 = 1 \implies \alpha = \pm 1$ -Therefore, (D) is the correct Ans. **10.** $P(2 \text{ white and } 1 \text{ black}) = P(W_1 W_2 B_3 \text{ or } W_1 B_2 W_3 \text{ or } B_1 W_2 W_3)$ $= P (W_1 W_2 B_3) + P (W_1 B_2 W_3) + P (B_1 W_2 W_3)$ = P (W_1) P (W_2) P(B_3) + P (W_1) P (B_2) P (W_3) + P (B_1) (W_2) (W_3) $=\frac{3}{4} \cdot \frac{2}{4} \cdot \frac{3}{4} + \frac{3}{4} \cdot \frac{2}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{2}{4} \cdot \frac{1}{4}$ $=\frac{1}{32} (9 + 3 + 1) = \frac{13}{32}$ Therefore, (A) is the Ans. **11.** $\sum_{i=1}^{13} (i^n + i^{n+1}) = \sum_{i=1}^{13} i^n (1+i) = (1-i) \sum_{i=1}^{13} i^n$ $-(1+i)(i+i^{2}+i^{3}+\dots i^{13})=(1+i)\left\{\frac{i(1-i)}{1-i}\right\}$ = (1 + i) i = -1 + i, Therefore, (B) is the Ans.0 The maximum value of $f(x) = \cos x + \cos^{2}(\sqrt{2}x)$ is 2 which occurs at x = 0. 12. Also, there is no value of x for which this value will be attained again. Imp. note : This question can be solved by calculus also. $f(\mathbf{x}) = \frac{x^2 - 1}{x^2 + 1} - 1 - \frac{2}{x^2 + 1}$ 13. *f* (x) will be minimum when $\frac{2}{x^2 + 1}$ is maximum, i.e., when $x^2 + 1$ is minimum i.e. at $\mathbf{x} = 0$. :. Minimum value of f(x) is f(0) = -1. Therefore, (D) is the Ans.

 $\frac{2+7}{2} = \frac{6+b}{2}$ $\frac{1+5}{2} = \frac{4+a}{2}$ and a = 2 and b = 3. Therefore, (C) is the Ans. **9.** It is given that a, b, c are linearly dependent $\Rightarrow [a, b, c] = 0$ It is given that α, β, c are integrity dependent of γ $\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 4 & 3 & 4 \\ 1 & \alpha & \beta \end{vmatrix}$ $\Rightarrow \begin{vmatrix} 1 & 0 & 0 \\ 4 & -1 & 0 \\ 1 & \alpha - 1 & \beta - 1 \end{vmatrix} = 0$ Apply $C_2 \to C_2 - C_1, C_3 \to C_3 - C_1$ Now expanding along R_1 , $-(\beta - 1) = 0 \implies \beta = 1$ -> Also $|\vec{c}| = \sqrt{3}$ (given) where $c = \hat{i} + \alpha \hat{j} + \beta \hat{k}$ (given) $1 + \alpha^2 + \beta^2 = 3$ \Rightarrow $1 + \alpha^2 + 1 = 3 \implies \alpha^2 = 1 \implies \alpha = \pm 1$ -Therefore, (D) is the correct Ans. **10.** $P(2 \text{ white and } 1 \text{ black}) = P(W_1 W_2 B_3 \text{ or } W_1 B_2 W_3 \text{ or } B_1 W_2 W_3)$ $= P (W_1 W_2 B_3) + P (W_1 B_2 W_3) + P (B_1 W_2 W_3)$ = P (W_1) P (W_2) P(B_3) + P (W_1) P (B_2) P (W_3) + P (B_1) (W_2) (W_3) $=\frac{3}{4} \cdot \frac{2}{4} \cdot \frac{3}{4} + \frac{3}{4} \cdot \frac{2}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{2}{4} \cdot \frac{1}{4}$ $=\frac{1}{32} (9 + 3 + 1) = \frac{13}{32}$ Therefore, (A) is the Ans. $\sum_{i=1}^{13} (i^n + i^{n+1}) = \sum_{i=1}^{13} i^n (1+i) = (1-i) \sum_{i=1}^{13} i^n$ 11. $-(1+i)(i+i^{2}+i^{3}+\dots i^{13})=(1+i)\left\{\frac{i(1-i)}{1-i}\right\}$ = (1 + i)i = -1 + i, Therefore, (B) is the Ans.0 The maximum value of $f(x) = \cos x + \cos^2(\sqrt{2}x)$ is 2 which occurs at x = 0. 12. Also, there is no value of x for which this value will be attained again. Imp. note : This question can be solved by calculus also. $f(\mathbf{x}) = \frac{x^2 - 1}{x^2 + 1} - 1 - \frac{2}{x^2 + 1}$ 13. *f* (x) will be minimum when $\frac{2}{x^2 + 1}$ is maximum, i.e., when $x^2 + 1$ is minimum i.e. at $\mathbf{x} = 0$. :. Minimum value of f(x) is f(0) = -1. Therefore, (D) is the Ans.

http://isbigdeal.blogspot.com

For ellipse condition of tangency is $c^2 = a^2 m^2 + b^2$ 19. $c^2 = 4 \times 4 + 1 = 17$ $c = \pm \sqrt{17}$ therefore, (C) is the Ans. -> Let the common ratio of the G.P. be r. Then 20. y = xr and $z = xr^2$ $\Rightarrow \ln y = \ln x + \ln r$ and $\ln z = \ln x + 2 \ln r$ Putting $A = 1 + \ln x$, $D = \ln r$ $\frac{1}{1+\ln x} = \frac{1}{A}, \frac{1}{1+\ln y} = \frac{1}{1+\ln xr} = \frac{1}{1+\ln x+\ln r} - \frac{1}{A+D}$ Then $\frac{1}{1+\ln z} = \frac{1}{1+\ln x + 2\ln r} = \frac{1}{A+2D}$ and Therefore, $\frac{1}{1 + \ln x}$, $\frac{1}{1 + \ln v}$, $\frac{1}{1 + \ln z}$ are in I.P. So (B) is the Ans. $3\sin^2 x - 7\sin x + 2 = 0$ (given) 21. $3\sin^2 x - 6\sin x - \sin x + 2 = 0$ -> $3 \sin x (\sin x - 2) - 1 (\sin x - 2) = 0$ => $(3 \sin x - 1)(\sin x - 2) = 0$ \Rightarrow (sin x = 2 is rejected). $\sin x = 1/3 \operatorname{cr} \sin x = 2$ -> $x = n\pi + (-1)^n \sin^{-1}\frac{1}{3}, n \in I$ = For $0 \le n \le 5$, $x \in [0, 5\pi]$: There are six values of $x \in [0, 5\pi]$ which satisfy the equation $3\sin^2 x$ 7 sin x + 2 = 0 Therefore, (C) is the Ans. $y = (c_1 + c_2) \cos (x + c_3) - c_4 e^{x + c_5}$ (given) ...(1) 22. $y = (c_1 + c_2) \cos (x + c_3) - c_4 e^x \cdot e^{c_5}$ -Now let $c_1 + c_2 = A$, $c_3 = B$, $c_4 e^{c_5} = C$ $y = A\cos\left(x + B\right) - Ce^{x}$...(2) differentiate w.r.t. x $\frac{dy}{dx} = -A\sin(x+B) + Ce^x$...(3) -> differentiate again w.r.t x $\frac{d^2y}{dx^2} = -A\cos(x - B) - Ce^x$ $\frac{d^2y}{dx^2} = -y - 2Ce^{x^2/3}$...(4) from (2)...(5) $\frac{d^2y}{dx^2} \cdot y = -2 Ce^{x}$ differentiate again w.r.t. x $\frac{d^3y}{dx^3} + \frac{dy}{dx} = -2Ce^x$...(6) ⇒

 $\frac{d^3y}{dx^3} + \frac{dy}{dx} = \frac{d^2y}{dx^2}$ from (5) which is a differential equation of order 3. Therefore, (C) is the Ans. **23.** Let $f(x) = \sin^2 x$ and $g(x) = \sqrt{x}$ Now fog (x) - f (g (x)) = f (\sqrt{x}) - sin² \sqrt{x} and $gof(x) = g(f(x)) = g(sin^2 x) = \sqrt{sin^2 x} = |sin x|$ again. $f(x) = \sin x$, $\sigma(x) = |x|$ $fog(x) = f[g(x)] = f(|x|) = \sin |x| \neq (\sin \sqrt{x})^2$ When $f(x) = x^2$, $g(x) = \sin \sqrt{x}$ $fog(x) = f[g(x)] = f(\sin \sqrt{x}) = (\sin \sqrt{x})^2$ and $(gof)(x) = g[f(x)] = g(x^2) = \sin \sqrt{x^2} = \sin |x| \neq |\sin x|$ Therefore, (A) is the Ans. 24. $A_2\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)$ $A_1\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$ (-1.0 $A_5\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ $A_0 A_1^2 = \left(1 - \frac{1}{2}\right)^2 + \left(0 - \frac{\sqrt{3}}{2}\right)^2 = \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1$ $A_0A_1 = 1$ \Rightarrow Next, $A_0 A_2^2 = \left(1 + \frac{1}{2}\right)^2 + \left(0 - \frac{\sqrt{3}}{2}\right)^2 = \left(\frac{3}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2 = \frac{9}{4} - \frac{3}{4}$ $-\frac{12}{4}-3$ $A_0A_0 = \sqrt{3}$ Next $A_0 A_4^2 = \left(1 + \frac{1}{2}\right)^2 + \left(0 + \frac{\sqrt{3}}{2}\right)^2 = \left(\frac{3}{2}\right)^2 + \left(\frac{3}{4}\right) = \frac{9}{4} + \frac{3}{4} = \frac{12}{4} = 3$ $A_0 A_4 = \sqrt{3}$ ⇒ Thus, $(A_0A_1)(A_0A_2)(A_0A_4) = 3$. 25. $[\underline{m} \ \underline{n} \ \underline{a}] - - [\underline{a} \ \underline{n} \ \underline{m}] = [\underline{n} \ \underline{m} \ \underline{a}] = [\underline{m} \ \underline{n} \ \underline{n}]$ Therefore, (C) is the Ans. The probability that only two tests are needed = probability that the first 26.

machine tested is faulty × (probability that the second machine tested is faulty given that the first machine tested is faulty = $\frac{2}{4} \times \frac{1}{3} - \frac{1}{6}$. Therefore, (B) is the Ans.

http://isbigdeal.blogspot.com

are the answers.

27. $h(x) = \min \{x, x^2\}$ (given). We will trace h(x) = x and $h(x) = x^2$ separately. From fig it is clear that $h(x) = \begin{cases} x, & \text{if } x \le 0 \\ x^2, & \text{if } 0 \le x \le 1 \\ x, & \text{if } x \ge 1 \end{cases}$ From the graph it is clear that h is continuous for all $x \in R$ and h'(x) = 1 for all $x \ge 1$ and h is not differentiable at x = 0 and x = 1. Therefore, (A), (C) and (D)

28.
$$f(x) = 3x - 5$$
 (given)
Let $y = f(x) - 3x - 5 \Rightarrow y + 5 = 3x \Rightarrow x = \frac{y + 5}{3}$ (1)
and $y = f(x) \Rightarrow x = f^{-1}(y)$...(2)
From (1) and (2)
 $f^{-1}(y) - \frac{y + 5}{3} \Rightarrow f^{-1}(x) = \frac{x + 5}{3}$
Therefore, (B) is the Ans.
29. A. $P(E/F) + P(\overline{E}/F) = \frac{P(E \cap F)}{P(F)} + \frac{P(\overline{E} \cap F)}{P(F)}$
 $= \frac{P(E \cap F) + P(\overline{E} \cap F)}{P(F)} = \frac{P(E \cap F) + P(\overline{E} \cap F)}{P(F)}$
 $= \frac{P(F)}{P(F)} - 1$ therefore, A is the Ans.
B. $P(E/F) + P(E/\overline{F}) = \frac{P(E \cap F)}{P(F)} + \frac{P(E \cap \overline{F})}{P(\overline{F})} = \frac{P(E \cap F)}{P(F)} + \frac{P(E \cap \overline{F})}{P(F)} \neq 1$
Therefore, (B) is not the Ans.
C. $P(\overline{E}/F) + P(F/\overline{F}) = \frac{P(\overline{E} \cap F)}{P(F)} + \frac{P(E \cap F)}{P(\overline{F})} + \frac{P(E \cap F)}{P(\overline{F})}$
Therefore, (C) is not the Ans.
D. $P(E/\overline{F}) + P(\overline{E}/\overline{F}) = \frac{P(E \cap \overline{F})}{P(\overline{F})} + \frac{P(\overline{E} \cap \overline{F})}{P(\overline{F})}$
 $= \frac{P(E \cap F) + P(\overline{E} \cap \overline{F})}{P(\overline{F})} = \frac{P(E \cap F) + P(\overline{E} \cap \overline{F})}{P(\overline{F})}$
 $= \frac{P(E \cap F) + P(\overline{E} \cap \overline{F})}{P(\overline{F})} = \frac{P(E \cap F)}{P(\overline{F})} + \frac{P(E \cap \overline{F})}{P(\overline{F})}$

 $=\frac{P(F)}{P(\overline{F})}=1$. Therefore, (D) is true.

So (A), (D) are the Ans.

30.
$$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x - iy \quad (given)$$

$$\Rightarrow -3i \begin{vmatrix} 6i & 1 & 1 \\ 4 & -1 & 1 \\ 20 & i & i \end{vmatrix} = 0 \quad [\Rightarrow C_2 \text{ and } C_3 \text{ are proportional}].$$

$$\Rightarrow -x + iy = 0 \Rightarrow x = 0, y = 0. \text{ Therefore, (D) is the Ans.}$$

31. The event that the fifth toss results in a head is independent of the event that the first four tosses result in tails.
A probability of the required event = 1/2
Therefore, (A) is the Ans.
32. Distinct *n* digit numbers which can be formed using digits 2, 5 and 7 are 3ⁿ. We have to find *n* so that 3ⁿ ≥ 900 $\Rightarrow 3^{n-2} \ge 100$
 $\Rightarrow -n-2 \ge 5 \Rightarrow n \ge 7 \text{ so the least value of n is 7. Therefore, (B) is the Ans.
33. The no. of ways of placing 3 black balls without any restriction is 10 C_3. Since we have total 10 places of putting 10 bals in a row and firstly we will put 3 black balls. Now the no. of ways in which no two black balls put together is equal to the no. of ways of choosing 3 places marked—out of eight places.
 $-W - W - W - W - W - W - W - W - M$
This can be done in 3c_3 ways. Thus, probability of the required event $= \frac{{}^9c_3}{10c_3} = \frac{8 \times 7 \times 6}{10 \times 9 \times 8} - \frac{7}{15}$. Therefore, (B) is the Ans.
34. $\sin n\theta = \sum_{r=0}^{n} b_r \sin^r \theta$ (given)
Now put $\theta = 0$, we get $0 = b_0$
 $\sin n\theta = \sum_{r=1}^{n} b_r (\sin \theta)^{r-1}$
taking limit as $0 \to 0$
 $\Rightarrow \lim_{n \to 0} \frac{\sin n\theta}{\sin \theta} - \lim_{r \to 1} \frac{2}{b_1} b_r (\sin \theta)^{r-1}$
 $\frac{n\theta \cdot \sin n\theta}{\theta + \frac{6}{\theta}} = \frac{1}{b_1} = b_1$
 $\Rightarrow b_1 = n$ Therefore, (B) is the Ans.$

http://isbigdeal.blogspot.com

15.	$\sin 15^\circ = \frac{1}{2}\sqrt{2-\sqrt{3}} \qquad (formula)$				
	and $\cos 15^\circ = \frac{1}{2}\sqrt{2 + \sqrt{3}}$ (formula)				
	and $\sin 15^\circ \cos 75^\circ = \sin 15^\circ$. $\sin 15^\circ = \frac{1}{4}(2 - \sqrt{3})$. Therefore values are irrational and	, all these			
	$\sin 15^{\circ} \cos 15^{\circ} = \frac{1}{2} \cdot 2 \sin 15^{\circ} \cos 15^{\circ} = \frac{1}{2} \cdot \sin 30^{\circ} = \frac{1}{4}$ which is	rational			
	therefore, (C) is the Ans.				
36.	It is given that $x^2 + y^2 = a^2$	(1)			
	and $xy = c^2$	(2)			
	We obtain $x^2 + c^4/x^2 = a^2$				
11 2325	$\Rightarrow \qquad x^4 - a^2 x^2 + c^4 = 0$	(3)			
	Now x_1 , x_2 , x_3 , x_4 will be roots of (3).	121			
	Therefore $\sum x_1 = x_1 + x_2 + x_3 + x_4 = 0$				
	and product of the roots $x_1 x_2 x_3 x_4 = c^4$	`			
	Similarly, $y_1 + y_2 + y_3 + y_4 = 0$ and $y_1 y_2 y_3 y_4 = c^4$				
	Therefore, (a), (b), (c) and (d) are the answers.				
37.	It is given that $P(E) \le P(F) \implies E \subseteq F$	(1)			
	and $P(E \cap F) > 0 \implies E \neq F$ (A) occurrence of $E \Rightarrow$ occurrence of F from (2)	(2)			
	(B) occurrence of $F \Rightarrow$ occurrence of E from (2)				
	(C) non-occurrence of $E \Rightarrow$ non-occurrence of F from (1) Therefore, (D) is the Ans.				
38.	A. \vec{u} $(\vec{v} \times \vec{w})$ is a meaningful operation, therefore, (A) is the An	5.			
	B. $\vec{u} \cdot (\vec{v} \cdot \vec{w})$ is not meaningful since $\vec{v} \cdot \vec{w}$ is a scalar quantity and for dot product both quantities should be vector. Therefore, (B) is not the Ans.				
м ^а Э	$\overrightarrow{\mathbf{C}}$. $(\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{w}$ is meaningful since it is a simple multiplication of vector and scalar quantity. Therefore, (C) is not the Ans.				
D. $\vec{u} \times (\vec{v} \cdot \vec{w})$ is not meaningful since $\vec{v} \cdot \vec{w}$ is a scalar quantity and for cross product, both quantity should be vector. Therefore, (D) is the Ans. Hence (A) ² and (C) are the Ans.					

39.
$$\int_0^x f(t) dt = x + \int_x^1 t f(t) dt$$

(given)

Differentiating both sides w.r.t. x, we get

$$\Rightarrow \qquad (1-x) f(x) = 1 - x f(x) \cdot 1$$
$$\Rightarrow \qquad (1-x) f(x) = 1$$
$$\Rightarrow \qquad f(x) = 1/(1+x)$$
$$\Rightarrow \qquad f(1) = \frac{1}{1+1} = \frac{1}{2}$$

Therefore, (A) is the Ans

40. Let
$$h(x) - f(x) - (f(x))^2 + (f(x))^3$$

Differentiate the whole equation w.r.t. x
 $h'(x) = f'(x) - 2f(x) \cdot f'(x) + 3 f^2(x) \cdot f'(x)$

$$= f'(x) \left[1 - 2 f(x) + 3f^{2}(x) \right]$$

= $3f'(x) \left[(f(x))^{2} - \frac{2}{3} f(x) + \frac{1}{3} \right]$
= $3f'(x) \left[(f(x) - \frac{1}{3})^{2} + \frac{1}{3} - \frac{1}{9} \right]$
= $3f'(x) \left[(f(x) - \frac{1}{3})^{2} + \frac{3 - 1}{9} \right]$
= $3f'(x) \left[(f(x) - \frac{1}{3})^{2} + \frac{2}{9} \right]$

Note that h'(x) < 0 if f'(x) < 0 and h'(x) > 0 if f'(x) > 0Therefore, h(x) is increasing function if f(x) is increasing function, and h(x) is decreasing function if f(x) is decreasing function. Therefore, (A) and (C) are the Aris.